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Abstract. The real Weinberg state method devised to calculate a suitable form factor of the 
resonant final state in a stripping reaction is applied to elastic resonant scattering of neutrons 
by "C. The purpose is to establish the methodological accuracy of the theory. Some 
important adjustments to the theory are incorporated. The phase shifts of the different 
total angular momentum and parity (J" = $+, $+, 4') channels are compared with the 
exact solution obtained from a coupled-channel method. The agreement is generally satis- 
factory. The parameters of the resonances yielded by the respective methods are also com- 
pared. The Weinberg method describes the levels as mixtures of discrete configurations 
which are either BSEC (bound states embedded in the continuum) or single-particle resonances 
treated as Weinberg states. The wavefunctions of the respective methods are used as form 
factors in "C(d, p)I3C stripping calculations, again with satisfactory agreement. The role 
of the Weinberg method as a schematic way of solving a coupled-channel problem is briefly 
discussed. 

1. Introduction 

It was found by Huby and Mines (1965) that the adaptation of the DWBA to handle 
stripping reactions A + d -, B* + p in which the residual nucleus B* is left not in a bound 
state as usual, but in a quasi-stationary state or an unbound level above the particle 
emission threshold meant using a scattering wave for B* in place of the usual bound one. 
This scattering wave should be an exact eigenfunction of the (n +A) system in a scattering 
state. Recently, much theoretical as well as experimental effort has been directed towards 
the study of stripping to unbound states (Alty et a1 1967, Bohne et al 1968, Huby and 
Liu 1968, Levin 1968, Vincent 1968, Bang and Zimanyi 1969, Bunakov 1970, Vincent 
and Fortune 1970, Lipperheide 1970, Fuchs et a1 1971, 1972, Schlessinger and Payne 
1972). Nearly all the authors used the DWBA formalism, but they differed in their pre- 
scriptions for the scattering wavefunction of the residual (n + A) system. 

The familiar problem of the slow convergence of the integral involving this scattering 
state in the DWBA was solved elegantly by Vincent and Fortune (1970). But up to the 
present, the scattering wavefunction of this B* has been constructed in a rather ad hoc 
manner. One would like to see it being part of a more systematic theoretical scheme. 
Preferably, any such theory should endow this wavefunction with some features which 
are deemed desirable on very general grounds. These were previously described by Huby 
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(1971). We summarize here : (i) the wavefunction, hence scattering amplitude, should 
exhibit a Breit-Wigner type energy dependence, (ii) the radial function (the form factor) 
should have an almost bound behaviour inside the well, and make a smooth transition 
through the surface to the proper oscillatory form outside, (iii) a compound resonant 
level should exhibit a component which constitutes a single-particle (SP) potential 
resonance which is mixed with other configurations, (iv) it should embody a well defined 
spectroscopic factor. 

These unbound states can also be reached by straightforward n-A resonant scattering. 
While there are many powerful, established resonant scattering theories, they are not 
particularly tailored to produce a simple and easily handled form factor for a resonant 
state which exhibits the above four features, is not too model dependent, and which 
experimentalists can incorporate into their DWBA programs so that stripping to  bound 
and unbound states can be analysed in a unified way. In terms of accuracy and simplicity, 
this form factor should be comparable to the usual bound state ones calculated by the 
separation energy method (Austern 1970). 

Let us consider how these requirements reflect on various theories and on our present 
choice of method. In the Humblet and Rosenfeld (1961) theory, the Gamow functions 
which are defined as the resonant wavefunctions have exponentially increasing asymptotic 
form : this applies also to the description of resonances by Glockle et al(1967) and Romo 
(1968). The Feshbach theory falls short on the spectroscopic factor requirement because 
of the inexplicit way in which it mixes the SP resonance with the other configurations. A 
combination of the R matrix theory and Butler theory was successful in a very approxi- 
mate analysis of stripping to unbound states (Huby and Liu 1968). In spite of recent 
development in R matrix theory (Purcell 1969), on its own the theory produces a form 
factor which is either too complicated for our purpose or is not smooth at the surface of 
separation of internal and external regions. The somewhat arbitrary device of a cut-off 
radius also occurs in the management of SP resonances as discrete states by Unger 
(1969), Wang and Shakin (1970), Mahaux and Saruis (197 1). 

Whereas the theories mentioned so far are to some extent ‘schematic’ in the desired 
sense of displaying resonance behaviour explicitly, though at the expense of accuracy, 
there is the opposite approach of setting up coupled-channel (cc) equations, given a 
sufficiently detailed model (eg within the continuum shell-model scheme), and solving 
these exactly, numerically across an energy range, to search for identifiable resonances 
in the results (eg Buck and Hill 1967, Mikoshiba et a1 1971). This is laborious and gives 
little insight into the structure of the resonance, though recently procedures have been 
given for extracting spectroscopic information from cc calculations (Mikoshiba et a1 
1971, Mahaux and Saruis 1971), necessitating, however, the introduction of a cut-off 
radius. There are possibilities for simplifying cc calculations by matrix or finite rank 
approximations, such as those reviewed by Romo (1972), and the ‘factorization’ method 
of Van Giai and Marty (1970). However, the theories of this type so far seem to lack the 
particular degree of schematization needed to fulfil our stated requirements, but a way 
of achieving this was found by Huby (1971) through a suitable modification of the 
continuum shell model of Glockle et al(1967) and Rosenfeld (1968). I t  must be empha- 
sized that this is the motivation for introducing the modification into the theory of 
Glockle et a1 rather than a wish to produce yet another continuum shell-model theory. 

The actual important difference between Huby (1971) and Glockle et al(1967) (and 
also Rosenfeld 1968) is the way in which the hamiltonian is manipulated. This leads 
to non-trivial modification of the formulation of the solution. The modified continuum 
shell model of Huby (1971) is developed in two different schemes which lead separately 
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to a T matrix and a K matrix. The latter scheme is more accurate and is the one which 
one of us adopted in a previous work (Liu 1973) and in the present paper. This scheme 
relies on the use of the real Weinberg state?. 

Before a prescription for the form factor of the unbound state can be applied with 
confidence, the mathematical method used to derive it must be tested. Implicitly, this 
means testing the model of Huby (1971), in particular the crucial approximations 
introduced in the formalism and the real Weinberg state used to handle the SP resonance. 
In simple potential scattering, the accuracy of the real Weinberg state method was 
demonstrated by Liu (1973), from which further support was found for identifying a 
potential resonance by a real Weinberg state. The present paper deals with the situation 
where more complicated nuclear configurations are mixed in with the SP resonance. 
Assuming a suitable interaction model which describes n-l 2C scattering, our solution 
is compared with the exact solution, that is, that of a cc method. Our method is then 
regarded as an approximation to the cc method. If the latter falls short of predicting 
the actual experimental results, then so will ours. Quantities calculated in #4 and 5 
are the neutron phase shifts, the parameters of the 13C levels, and also neutron 
wavefunctions, which are finally applied as form factors in a DWBA calculation of the 
'*C(d, p)13C* reaction leading to unbound levels. We examine in detail the extent to 
which the schematic approximation accounts for the physical behaviour of the unbound 
levels. 

2. The real Weinberg state formalism 

In this section we only describe the important changes in the formalism of Huby (1971) 
because of three major adjustments introduced in this work : (i) the decomposition of 
the space of functions, (ii) the construction of the separable potential from more than 
one real Weinberg state, (iii) the choice of energy at which the real Weinberg state is 
calculated. Some symbols have also been changed. 

The underlying model of the n-A scattering process is identical to that in Huby 
(1971). With trivial changes in symbols, the hamiltonian of the system is 

= + + + (2.1) 
whose eigenfunction is 

m 

@(r9  5) = F1( r )yA1( t )+  Fa(r)yAu(t), (2.2) 
a= 2 

in which the first term is the elastic component and YAu is an eigenstate of HA(<).  
It will prove convenient to use Weinberg treatment not only in the elastic channel as 

was done in Huby (1971). Therefore, besides the operator P which picks out the first 
term in (2.2) (and the operator Q = 1 - P), we also define a different projection operator 
P which picks out several terms including the first, the exact channel selection being 
left open as yet. Then Q = 1 - P  projects out all the remaining terms. One can then 
follow the same operator and matrix equations as in Huby (1971) for finding the full 
standing-wave solution 0 and the K matrix, by a division of H into unperturbed and 
perturbed parts H, and H', but doing this now with P and everywhere in place of P 
and Q. However, when it comes to the Weinberg method of splitting off a separable 
potential V, from the perturbation PH'P,  we shall now construct a finite-rank potential 
t The definition of the real Weinberg state is found in Liu (1973). 
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V, by using L in number quasi-particle states, which are to be specified later : 
L 

V, = PH’PIs)  (A-’) , , ( t lPH’P,  
S,f 

with 

A,, = ( i lPH‘Pl t ) .  (2.4) 

Under favourable conditions, V‘ = P H ‘ P -  V, can be a small quantity. This form of 
finite-rank potential was used by Fuller (1969) and Romo (1972), and differs from that of 
Glockle et a1 (1967), Rosenfeld (1968), and Huby (1969), except when A,, is diagonal. 

The result for G (the resolvent of the standing-wave Lippmann-Schwinger kernel) 
remains the same in form as (6.4) of Huby (1971), except that the summation over 1 
and p runs from 1 to ( L + M ) ,  the states la,), (ELI being enumerated as follows: the 
states 

1%) = Is), (Esl = (SI, (s = 1, . . . ,  L) (2.5) 

are the quasi-particles, and the states 

are Q space eigenfunctions. Also because of (2.3), in the definition of the matrix element 
N, ,  (equation (6.5) of Huby 1971), the term AA6,, must be replaced by a suitably modified 
matrix element AA,. 

The K matrix is? 

K(E) = -nH’(l+G). (2.7) 

Next we specify that each quasi-particle state Is), ($1 is to be a real Weinberg state 
(Weinberg 1963, Liu 1973) (a semi-ideal choice), IOs(E)), (as@)[ satisfying 

where Os can be factorized, 

Here P signifies principal part at the singularity of ( E  - H,J for the open channel, 
but in a closed channel the regular behaviour of (E - Ho)-  must be used to obtain the 
correct asymptotic behaviour. 

Then the matrix elements N , ,  are: for ,I < L, p < L, that is, when la,) and la,) 
are in the P space, 

(2.10~) 

t This definition is identical to that of Newton (1966) but differs from that of Huby (1971) by a factor of - n. 
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for i > L, p > L, that is, when la,) and la,) are in the Q space, 

for /I < L, p > L, that is, when la,) is in the P space, la,) is in the Q space, 

Here we have relabelled the eigenvalues E, of QHoQ as E ,  (with i = L + i). We made the 
same kind of approximation as in Huby (1971) to derive (2.10u-c), and with the corre- 
sponding approximations in (2.7) we obtain the on-shell matrix element of K in the 
free partial wave IX) ,  

L + M  

tan 6 = - n ( X / V ' I X )  -n  1 (XIH ' Ia , ) (N- ' ) , , (~ , I~ ' IX) .  (2.1 1) 
A#= 1 

Use of (2.10H2.11) to calculate the phase shifts will be called method 1. 
In these equations, there is implicit energy dependence in all the quantities, par- 

ticularly in N. In Huby (1971) the energy dependence near a resonance was exhibited 
approximately by making a linear expansion about the energy at which P(E) is unity, 
that is, the formal single-particle resonance energy. However, more accurately the 
linear expansion may be made about any reference energy, say E ,  near which we wish 
to work. The strongest energy dependence in N i p  will come from the factor (1 - P,(E)) 
in (2.10~). We therefore expand this linearly about E ,  neglecting the energy dependence 
of all other factors in N,, . Provided Ia,,(E)) is normalized so that 

(2.12) 

(2.13) 

where 

E, = E -(I -P,(E)) (a,(E)I UspIaj(E)), (2 = 1,. . . , L). (2.14) 

The energy E ,  is an 'effective' single-particle resonance energy, for use when E is 
near E ,  and indeed E ,  will be almost equal to the formal single-particle resonance 
energy at which P, is unity, if P,(E) varies nearly linearly with E.  Now the matrix N 
can be written in an approximate, compact form 
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with the understanding that BA(,!?) = 1 for any E if l. > L. After W‘ is diagonalized by 
an orthogonal matrix T of elements t,, its eigenvectors are 

L + M  

I W l >  = c t&,> (2.17) 

with eigenenergies W;(E). Each loj.) is associated with an unbound level of formal re- 
sonance energy W;(E) (if W;(E) > 0). After performing the transformation T, (2.11) 

p =  1 

reduces to 

tan6 = 

where 

T;(E) = 

2: ($-)‘++ 2n(X(W;)IH’lw,)Z 

(2.18) 

(2.19) 

with r; defined as the formal resonance width, the energy-dependence parametrization 
being taken from Liu (1973). Phase shifts calculated by (2.18), (2.19) are said to be 
calculated by method 2, that is, a fully schematic linear approximation to the more 
exact method I. 

If in the elastic scattering channel we have just one real Weinberg state Ol , then a 
formal SP resonance width can be defined as 

The spectroscopic amplitude of the Ath level may be defined as 

e, = til. (2.21) 

The relation between the formal width of the Ah level and the SP formal width is, from 
(2.19)-(2.21), 

(2.22) Jrr = 4JCP + &(XI YeslW,>5 

(assuming that both the matrix elements appearing in (2.19) and (2.20) have been made 
positive by suitable phasing of lo,) and IO,,)). Under favourable circumstances this 
yields 

r; e;r;p, (2.23) 

which constitutes a way of extracting the spectroscopic factor from the width. 

(1971) to equations for an actual level width 
(6.24) of Huby 1971). 

Apart from minor but obvious changes in notation, we can proceed as in Huby 
and shift AA and for the S matrix ((6.21k 
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The physical scattering wavefunction Y(+) which corresponds to the approximations 
of method 2 can be written as 

y(+) = ( l+G)X 
1 -i(XlKlX) 

(2.24) 

Here p means an operator which, acting on any of the states la,), has the eigenvalue p a .  
(The ( k) sign in (2.24) corresponds to the usual indeterminacy of phase shift by a multiple 
of n : it must be chosen to make 2 cos 6 positive.) 

For widely-spaced resonances, a single-level approximation to (2.24) yields for the 
wavefunction in the elastic channel 

(2.25) 

x { ( E -  W;-A,)2+ir;}-1'2.  

These wavefunctions satisfy the requirements set out in 0 1, as in the similar case argued 
in Huby (1971), but now with extra refinements of the model listed at the beginning of 
this section. In particular PY(+) has the right asymptotic behaviour. (A consistent 
convention for the (k) sign in (2.25) is to allow 6 to vary continuously with energy from 
zero at zero energy, in which case the sign factor is ( -  l)a, on labelling the resonances E, 
as 1,2,. . . in ascending energy W;.) 

3. Application to n-"C scattering 

The even-parity elastic scattering of neutrons on "C was chosen as a test case for 
the real Weinberg state method. There is a wide energy range over which only elastic 
scattering occurs. In this range there are both wide and narrow resonances, indeed 
overlapping ones, which provide the situation we are looking for, that is, potential 
resonances mixed with BSEC. The corresponding spectrum of positive-parity levels in 
13C is shown in figure 1, column 1. A collective model for 12C affords a reasonably 
successful description of n-12C scattering and is amenable both to cc calculations 
(Buck 1963, Pisent and Saruis 1967, Reynolds et a1 1968, Pascolini et a1 1969, Mikoshiba 
et a1 1971) and to the present method. The most successful cc calculation on this 
reaction is by Mikoshiba et a1 (see also Mori and Terasawa 1972). To test the real 
Weinberg state method, assuming a given model, our calculations should be compared 
with the exact cc solution. To assume a model which gives a very good fit to the experi- 
mental data is not vitally important to us, and so we employed the simpler model of 
Pascolini et a1 (1969). 
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3.87 512' 

Expt Uncoupled c c  Mothod 2 
energies 

Figure 1. Positive-parity spectrum of I3C in the energy region considered. The experimental 
data are from Ajzenberg-Selove (1970). 

The model describes "C as a rotator with two states, rhe O f  ground state and 2' 
excited state at  4.43 MeV, to the deformed field of which the incoming neutron is coupled. 
The neutron potential is of the usual deformed Woods-Saxon type plus spin-orbit 
term (Tamura 1965), and the parameters of Pascolini et a1 (1969) are used, in particular, 
deformation ,b = -0.4. A channel of total angular momentum ( J ,  M,)  may be formed 
by vector addition of a rotational state of the core (angular momentum I ,  MI and 
energy gI) to a neutron state with quantum numbers ( j ,  I ) ,  the resulting radial wave- 
function for the neutron in this partial-wave channel being written ui j f ( r ) .  The wave- 
functions for the various partial-wave channels with fixed J and parity are connected 
by a familiar set of coupled equations (Buck 1963, Pisent and Saruis 1967, Mikoshiba 
et al 1971, Tamura 1965): 

Here U,, is the central plus spin-orbit component of the neutron potential, andf2(r) is the 
radial factor of the quadrupole-deformed component of the potential. The coupling 
matrix element w"' is a number given in Pisent and Saruis (1967, equation (17a)). 
The essence of the cc method is that these equations are integrated numerically with 
scattering boundary conditions, and from the asymptotic form of the solution the S 
matrix and the phase shift are deduced. 

In the real Weinberg state method we consider an incident partial wave ( j , ,  f l ) ,  
and again we seek the 'exact' wavefunction which this induces in the various partial- 
wave channels having the same value of J (equals j , )  and parity. Equation (3.1) cor- 
responds to an eigenstate equation for the hamiltonian of (2.1), the right hand side 
of (3.1) representing the effect of ye,. Neglecting ye,, we should obtain a set of uncoupled 
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bound states and resonances (I,?) consisting of a single-particle level j n  attached to a 
core state I .  

The single-particle levels are found to be the following bound states-a Is) level at 
- 23.81 MeV, a 2s) at - 1.07 MeV, and a Id; at -0.06 MeV-and a dq resonance 
at 5.31 MeV (the resonance being defined by the condition that the phase shift is 3.). 
This would lead to the uncoupled bound states and resonances (I ,?)  in 13C shown in 
figure 1, column 2 (assigning the experimental value 4.95 MeV to the neutron separation 
energy in 13C). 

For given J",  the projection operator P selects the incident channel ( Z , j n )  = (0, J:'), 

but we wish further to set up a projection operator P which in addition to these channels 
picks other partial-wave channels for Weinberg state treatment. The partial-wave 
channels with d; single-particle states call for this treatment because there is a d i  
resonance even though no bound state. The remaining channels form the Q space, in 
which the basic states IQi) are the uncoupled bound states I Z , j n )  already discussed, 
their angular momenta being summed vectorially to J .  The resulting disposition of 
real Weinberg states 10,) and Q space states IQi) is represented in figure 2, the former 

i 

Figure 2. TheP and Q state vectors in the J" = F, p, 
boxes areP space state vectors, the others are in the Q space. 

channels. The states in the shaded 

being in the shaded boxes and the latter in the unshaded. The inclusion of the single- 
particle l s i  state in this set looks dubious because of the Pauli principle, but it must be 
remembered that in the cc method all partial waves implicitly contain components of 
all principal quantum numbers. We can draw our conclusions after examining the 
calculation with and without this state. 

The Weinberg states IQ.,) accord with (2.8) and (2.9) apart from summation of the 
angular momenta of the SP and core factors j and I to total J .  When working at a re- 
ference energy E ,  the SP neutron factor is a real Weinberg function as specified in Liu 
(1973, equation (2.3)) but now calculated at the SP energy 

d = (3.2) 
We take the target ground state as energy datum, that is, go = 0. However, when 8 
is negative, that is, for the SP configuration (2+, ldi), we use the regular Lippman- 
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Schwinger kernel, (3.27) of Huby (1971), to define the Weinberg function. In any SP 

partial wave ( j ,  l) at energy 8 there is an infinite set of eigenfunctions 4s of the above SP 
kernel. They may be labelled by a 'principal quantum number' n = 1,2, .  . . in order of 
decreasing magnitude of the eigenvalue /?. It is in this sense that a principal quantum 
number has been attached to the Weinberg states indicated in the shaded boxes of 
figure 2. 

After inserting a r space representation of the principal part Green function in the 
formulae, all quantities are calculated numerically including the Weinberg function 4s 
and its eigenvalue /?,. 

In method 2, one will aim to choose a reference energy E in the neighbourhood of a 
particular resonance W ;  that is being studied, but if the method is to be meaningful the 
solution should be stable against variation of E,  that is, W;(E) should vary only weakly 
with E .  

A parametric formula must be used to extract resonance energies and widths from 
the phase shifts obtained from the experimental data, from the cc calculations and from 
method 1 so that these quantities can be meaningfully compared. We used a parametric 
formula suggested by (2.18) 

where N o  is the number of resonances we are taking into account in the energy range 
considered. The quantities W ;  are the energies where 6 goes through odd multiples 
of )n. A least-squares fit determines the background coefficient B and the widths r;. 

4. Results : phase shifts and energy levels 

All energies in this section are in the laboratory frame unless otherwise stated. 
In figure 3, we plot /?against the SP energy 6 of the relevant partial waves. The curves 

have the same qualitative features as those in Liu (1973). Both the Is+ and 2s i  solutions 
have /? greater than unity at zero energy, which corresponds to the fact that the potential 
supports two bound s states, and this necessitates the use of both solutions as quasi- 
particles in the J" = +' elastic-scattering channel. As shown by Liu (1973), these Wein- 
berg states cannot be normalized by a real normalization factor. 

For the J" = 3' channels, det[N(E)] as a function of energy is plotted in figure 4, 
using (2.10~-c) for N(E). The exclusion of the configuration (2+ ,  1s)) changes the shape of 
det[N(E)] slightly, but not its zeros, which represent the resonance energies in our 
approximation, method 1.  In figure 5, the$+ phase shift from the cc method is compared 
with those from method 1 and method 2. The exclusion of the configuration (2+,  1s;) in 
the latter two makes negligible difference to the results. The matrix W' of (2.15) was cal- 
culated at E = 3.47 MeV. For different choices of E in the elastic region we obtain sets 
of eigenvalues W ;  and the corresponding transformation coefficients tA,. For the 
states which are important to  us, these quantities are rather independent of E ,  as is 
desirable for the schematic approximation. The resonance energies and widths of the 
levels are presented in table 1 for comparison of experiment and the various theoretical 
methods. In method 2 the reference energy used was always E = 3.47 MeV (except in 
dealing with level I of table l (b)  discussed below). The absolute values of the transforma- 
tion coefficients t,, for the 3' levels I and 11, as given by method 2, are included in table 2. 
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8 ( M e V )  

Figure 3. Plots of eigenvalues /3 of the real Weinberg states characterized by the neutron 
quantum numbers nlj = (a) l s i ,  (b) 2s4, (c )  Id4 and (d) l d j ,  as functions of SP energy 8. 

I I I I I I I  

3.0 3 4  3.8 
E (MeV1 

Figure 4. In the J" = 4' channel, plot of det[N(E)] as a function 0. xergy. Full curve 1 s t  
included, broken curve Is4 not included. 

These 3' levels are the ones which appear in figure 1, columns 1,3 and 4. They overlap 
substantially, and it can be seen that they are shifted quite far by V,,, from the uncoupled 
levels of column 2. In particular, table 2 shows that the upper, broad level is a strong 
admixture of the (O', Id;) SP resonance and the (2+, Id;) BSEC whose uncoupled energies 
lie well removed from it. The results of the real Weinberg state methods 1 and 2 resemble 
each other closely. They yield phase shift curves in figure 5 which run a course similar 
to that of cc, and correspondingly the parameters of the 3' levels I and I1 in table l(a) 
are generally similar as given by the cc and Weinberg calculations, though there is 
indeed some displacement between the cc and Weinberg resonance energies, and a 
difference between the widths. The last two rows of table l(a) show that the crude SP 
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E ( M e V 1  

Figure 5. In the J" = channel, plots of the phase shift as function of energy. The small 
circles are from experiments (Pascolini et al 1969), the full curve is from the cc method, the 
broken curve is from method 1, the chain curve is from method 2. The latter two plots 
remain unchanged whether (2*, 1s)) is included or not. 

approximation to the level width r; (2.22) is not very good, perhaps suggesting 
that the smaller the spectroscopic factor 03 the worse this approximation. 

The J" = 3' channels are interesting in that the potential in the elastic channel 
(O' ,  Id;) supports a bound state, though we describe it instead by a real Weinberg state. 
The zero of det[N(E)] below the inelastic threshold depends hardly at all on whether 
or not the (2', 1s3) configuration is included. The various results for the 2' phase shift 
are compared in figure 6. Comments on the eigenvalues W;. and tAa as functions of E 
are the same as in the 3' channel. The absolute values of t , ,  for the +' levels I and 11, 
as given by method 2 neglecting the configuration (2', lsi), are included in table 2. 
Level I corresponds to the bound ;' state shown in figure 1, columns 1 and 4. To 
calculate it accurately we ought to work at a negative reference energy E making the 
appropriate analytic continuation, but in fact the calculation was done at E = 0.2 MeV. 
Also the Pauli principle whose effect may be greater for bound states, ought to be 
included, but this is beyond the scope of the model. We only note here that the level 
is not entirely single particle in nature. Level I1 represents the narrow +' resonance 
appearing in figure 1, columns 1, 3 and 4. It is mainly a mixture of two BSEC'S, with a 
small admixture of the open-channel level (O', Id?), its energy being well removed from 
all these uncoupled levels. As in the 3' case, the results of methods 1 and 2 agree closely 
with each other, and they agree in their general features with the cc results, as expressed 
by the phase-shift curves in figure 6 and the parameters of level I1 in table l(b), but there 
is some displacement between the resonance energies given by the respective methods 
and a difference between their level widths. Other remarks made about the 3' results 
also apply to the 3' case. 

It must be recognized that, while the various theoretical results for the 5' channels 
agree quite well with each other, they are all way off the experimental data. For the 
J" = 3' channel, the exclusion of the (O', Is+) configuration changes significantly the 
shape of det[N(E)] as a function of E .  This difference is demonstrated dramatically in 
the phase shift plot of figure 7. It also shows that in this channel the inclusion of this 
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Table 1. Comparison of the resonance energies, widths etc, obtained from experiment, the 
cc method and methods 1 and 2 for (a)  channels and (b)  F channels 

(a)  J" = 3' channels 

Level number I 
Dominant configurations 
(1, f l m  f2  + 2st) 

Experiment 2.95 

W>. (lab, MeV) Method 1 3.19 r Method 2 3.17 

(Experiment 250 

Resonance energy cc 3.06 

I11 IV 
(O', Id+) (2+,  ld;) 
(2+ ,  Id;) 
- - 

- - 

6.83 15.79 

410 1100 - 
- 1090 

Width TJ(keV) cc 
{Method 1 310 

- - [Method 2 350 1210 
- - 230 1000 

0.36 0.63 0.67 -0.18 

(b) J" = F channels 

Level number I t  
Dominant configuration 
(1, no) 

Resonance energy cc - 

r0+, Id+) 
Experiment - 1.09 

Wj(lab, MeV) Method 1 - 

Method 2 - 1.08 

Experiment - 

Method 1 - 

Method 2 - 

- 

1 
i Width r; (keV) cc 

efr:, (keV) 

@j. 

- 

0.92 

I1 

( 2 + ,  Id:) 
(2+ ,  2si) 

2.08 
2.84 
2.96 
2.97 

11 
17 
14 
12 
9 

0.08 

111 
( 2 + ,  Id;) 

- 

5.19 

IV 
(2+,  Id?) 

- 
15.25 

- 

0.09 

?The energies for this bound state are CM energies. 

configuration is essential for achieving correct results. This is a peculiarity of the 
Weinberg state formalism which perhaps detracts from its intuitive simplicity and appeal. 
The case of s wave neutron scattering does not lend itself to the schematic treatment of 
method 2. 

In summary, the real Weinberg state approximation reproduces quite faithfully the 
phase-shift curves and the resonance parameters as given by the exact cc calculation, 
though the accuracy of the agreement is not always very high. The test is an exacting 
one, because in this model V,,, produces large energy shifts and admixtures of the 
uncoupled states, together with overlapping levels. The results of the more exact 
but less illuminating method 1 are approached closely by those of the schematic ap- 
proximation, method 2. 

Table 2 presents a comparison of the absolute values of the mixing coefficients 
\r j ,J of method 2 for four levels with the corresponding quantities from a shell-model 
calculation (Sebe 1963) and a cc method (Mikoshiba et a1 1971). There is a considerable 
measure of agreement in the structural description of the levels by the different theories, 
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Table 2. Spectroscopy of the four levels considered. The absolute values of the transforma- 
tion matrix elements t l ,  from method 2 are compared with the absolute values of the mixing 
coefficients from a shell-model calculation (Sebe 1963), and with the absolute values of the 
square roots of the 'mixing ratio' from a cc calculation of Mikoshiba et nl(1971) 

Excitation 
energy from 
method 2 
(MeV) J" (2+, Ids) (2+, ld;) (2+, 2s;) (O+, Id+) (0'. Id;) 

~~ 

Method 2 
8.45 t' Shell model 

cc 

Method 2 
7.87 t' Shell model 

cc 

Method 2 
7.69 $+ Shell model 

cc 

Method 2 
3.87 $+ Shell model 

cc 

0.714 0.186 
0,608 0.366 
0.597 0.346 

0.004 0.003 
0.062 0.013 
0,148 0.21 

0.545 0.011 
0.465 0.002 
0,531 0.071 

0.360 0.045 
0.402 0.063 
0,437 0.105 

0.243 0.630 
0.154 0.685 
0.032 0.722 

0.931 0.364 
0,955 0,282 
0.929 0.270 

0.835 0,079 
0,873 0.118 
0,843 0.055 

0.126 0.920 
0.095 0.908 
0,130 0.835 

0 , :  :J - I 
2.0 3.0 4.0 

E (MeV1  

Figure 6. In the J" = channel, plots of the phase shift as function of energy. Small 
circles are from experiments (Pascolini et al 1969), the full curve is from cc, the broken curve 
is from method 1, the chain curve is from method 2.The latter two plots remain unchanged 
whether (2+, Is)) is included or not. 

though the shell model neglects the unbound nature of the levels, and the cc calculation . *.. . .. . >,.-<~ . .  .'. * .. . - - .  I .  (Mikoshiba et al IY / I )  necessitated the artince ot a radial cut-on or tne wavetunctions, 
in contrast to the consistent, schematic description of method 2. 

A really simple interpretation of the resonances would be realized if the width 
formula (2.22) were well approximated by (2.23). so that the width Ti, was just a fragment 
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- 

-120- 
0 2.0 3.0 4.0 

E (MeV)  

Figure 7. In the J” = channel, plots of the phase shift as function of energy. The small 
circles are from experiments (Pascolini er al 1969), the full curve is from CC, the broken 
curve is from method 1 with (O’, 1st) included, the chain curve is from method 1 with (O*, 1st) 
excluded. 

of the SP width with spectroscopic factor 6:. The first term in (2.22) is relatively ‘model 
independent’ by contrast with the second term, a ‘model-dependent’ correction due to 
V,,,. However, our results show that the ‘model-dependent’ term is in fact important, 
and so the simplest interpretation is dubious. 

The present calculations may be compared with some of the many others on n-”C 
scattering amplitudes in the same energy range, some of which have indeed achieved 
closer agreement with experiment. On solving the cc equations of a similar but more 
sophisticated model, Mikoshiba et a1 (1971) were able to get the first ;+ resonance at the 
right energy by including a specially prescribed interaction. We are confident that, by 
applying our approximations, methods 1 and 2, to their model we could have essentially 
reproduced their results. 

The Feshbach theory has been applied with varying degrees of success. Lovas (1966) 
obtained quite good agreement with experiment, but his results have been brought into 
question (Reynolds et al1968, Robson and Van Megen 1972a). Robson and Van Megen 
(1972a, b) seemed unable to make their resonance levels tally recognizably with a 
structure-model calculation which represented all the levels as discrete, in the way that 
table 2 succeeds in doing. Leung and Koshel (1973) obtained good agreement with 
experiment, using a rather more involved Nilsson-type wavefunction. 

R matrix calculations have been taken far enough to offer promise of success if 
elaborated sufficiently (Buttle 1967, Purcell 1969, Robson and Van Megen 1972a, b). 

The application of our method to this reaction seems to show up as a favourable 
compromise between simplicity and accuracy, apart from illustrating the general 
possibilities of the method. 

5. Wavefunction and stripping crow sections 

The unbound states of 13C have been seen as final states in the ”C(d, p)13C reaction in 
two experiments (McGruer et a1 1955, Hosono 1968). Hosono saw a 2’ level at 6.86 
MeV and 3’ levels at 7.64 MeV and 8.33 MeV; McGruer et a1 measured the same 
levels at  excitation energies 6.87, 7.64 and 8.4 MeV respectively. Unfortunately, there 
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is some doubt about the reliability of the experimental results; firstly the cross sections 
quoted for the $+ level differ by a factor of almost two in the two experiments, despite 
almost identical conditions. Secondly, the 3' levels may not have been analysed pro- 
perly : they are wide overlapping levels which interfere, and hence energy integrated 
cross sections for the individual levels cannot be extracted in the usual way. For these 
reasons, all calculations in this section are compared only with the corresponding 
coupled-channel results, not with experiment. 

Wavefunctions in the $+ and $+ channels have been calculated with the aid of (2.24). 
It is uij , , , (r) ,  the radial part? of the open-channel component PY" ' ) ,  which must be 
used in stripping calculations. This contains four terms : one uR1,  proportional to the SP 
Weinberg state (3rd term in curly bracket), a correction uR2 to this resonant term (last 
term), depending on the coupling yes, a main background term uB1 (1st term) propor- 
tional to the free wave, and a correction uB2 (2nd term) depending on V'.  The component 
of Y ( + )  in the subspace spanned by the configuration (2+, $+),which is treated as a quasi- 
particle, has no term uB1, and uBz is very small, depending only on V,,,, not Usp. In the 
subspace spanned by IQi), only the main term uR1 exists, proportional to the I Q i ) .  

All wavefunctions were calculated for a range of neutron energies E,  putting E = E 
and recalculating everything (including T,(E)) at each energy, so that, in effect, no linear 
approximation was made. Open-channel wavefunctions are normalized asymptotically, 

u(r) - sin(kr - i l l  71 + 6). 

It should be remembered that resonance energies from the Weinberg state method and 
cc method differ by over 100 keV (table l), therefore wavefunctions compared in this 
section are calculated at or near the resonance energies of the appropriate method- 
comparison at other energies would be misleading. 

Stripping cross sections and angular distributions were also calculated as functions 
of E, for a hypothetical (d, p) reaction on 12C. The deuteron energy was kept constant 
at 14.6 MeV (lab) and the energy of the neutron (and hence also of the outgoing proton) 
was varied in a region about each of the resonances. The wavefunctions u(r) and their 
coupled-channel counterparts were substituted in the DWBA matrix elements, the con- 
vergence of the radial integrals being expedited by the method of contour integration 
due to Vincent and Fortune (1970). Figure 8 shows how the wavefunction u(r) depends 
on each of the constituent parts in the $' channel at an energy only 0.6 keV above 
level I1 ( W i  as calculated by the Weinberg approximation, table l(b), method 2). The 
background uB2 is too small to show: away from the level uB1 becomes larger and 
eventually dominates. Whereas in the 2' channel the shape of uR2 inside about 5 fm 
changes strongly with energy, producing a resulting change in the total wavefunction 
(particularly near the origin), in the ++ channel the effect is not so marked. The relative 
magnitude of the correction terms UR2 and uB2 to uR1 and uBl respectively remains 
approximately constant at about 10-15 %. Figures 9(a), (b)  compare the open-channel 
wavefunctions with the corresponding cc calculation near level I in the $+ channel 
(table l (a ) )  and level I1 in the 2' channel (table l(b)). In the 2' case the discrepancy 
at small radii is due to the effect noted above-it becomes larger as the energy decreases. 
In the $' channel near level I1 the two calculations agree to better than 2 % in the range 
1-9 fm. The closed-channel wavefunctions have also been compared. For the component 
in the space spanned by the configuration (2+, +') the agreement is similar to that for 
P Y ( + ) .  For the other components agreement is usually not so good, which reflects the 

t Abbreviated subsequently to u(r).  
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I I I I 1 I I 
2 4 6 8 IO 12 

Radius r ( f m l  

Figure 8. In the J" = 
wavefunction at E = 2.737 MeV(cM) together with their sum PY"'. 

channel, plots of the constituent parts of the open-channel radial 

,--. 

2 4 6 8 10 
Radius r ( f m )  Radius r Lfm) 

Figure 9. (a)  In the J" = 3' channel, plots of the open-channel radial wavefunctions from 
the cc calculation, u(l), and Weinberg calculation, u(2), at CM energies 2.815 MeV and 2.95 
MeV respectively. The corresponding energies for the level I (table l(a)) are 2,817 MeV 
and 2.943 MeV. (b) as for (a) but in the J" = channel at CM energies 2.6232 MeV and 
2,737 MeV respectively. The corresponding energies for level 11 (table l(b)) are 2.6227 MeV 
and 2.7364 MeV. 

fact that their shape is uninfluenced by the interaction V,,,. In general, agreement is 
better for the ;+ levels than for the 2' level. Stripping cross sections for the "C(d, p) 
reaction, calculated at O", are compared in figures 10(a), (b) for the $' and 2' channels 
respectively. The $+ shows how the two levels interfere strongly near E = 3.1 MeV 
(cM). The Weinberg state method reproduces rather well the coupled-channel results 
except for the shift in energy of about 0.1 MeV. This shift is even more striking in the 
3' channel since it is much larger than the level width. The greater width from the 
coupled-channel calculations (table l(b)) is also evident. 

For the angular distribution, the two calculations agree to within about 5 %  (they 
also agree quite well with experiment (Hosono 1968)). Also, the shape does not vary too 
much with energy within the width of a level, thus making it easier to integrate over 
neutron energy. 
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Figure 10. In the J" = (a) 3'. (b) $+ channels, plots of the zero-angle DWBA cross sections 
for the reaction I2C(d, p) 13C as functions of neutron energy. a(1) and a(2) result from CC 

wavefunctions and (2.24) respectively. In (b)  a(3) is the model-independent calculation 
described in 5 5.  

One would hope that for an isolated resonance the energy dependence of the cross 
section a(E) should be given approximately by 

(cf equation (2.25) for the corresponding wavefunction). The energy-integrated cross 
section is then given by 

These formulae have been checked numerically for the 3' level 11, where, although the 
energy dependence is not given very accurately by (5.2) (shown by the asymmetry in 
figure 10(b)), the integrated values are within 3% of those predicted by (5.3). This holds 
for both the coupled-channel and Weinberg results, although these differ since the 
corresponding widths differ (table l(b)). This calculation is not possible for the 3' 
channel where the levels interfere destructively. 

In the 3' channel, the energy-integrated stripping cross sections calculated with the 
many-level equation (2.24) and a single-level approximation to it differ only by ,3%, 
and the former is within 1% of the value calculated from (5.2). Therefore, in spite of the 
noticeable effect of the - 1.08 MeV bound state on the wavefunction, a single-level 
approximation of the wavefunction is regarded as accurate enough for the extraction 
of the spectroscopic factor. Although the background terms may affect the wavefunction 
considerably, it has been estimated that they contribute only approximately 5-10% of 
the energy-integrated cross section. 

Another common approximation is the neglect of the small correction terms U B ~  

and uR2 in the wavefunction, since the calculation of these requires a detailed knowledge 
of the nuclear structure ('model dependence'). Calculations show that for this reaction 
these can indeed be neglected provided the resulting wavefunction is renormalized to the 
asymptotic magnitude given by (5.1). The calculated cross sections are then surprisingly 
accurate although the approximate wavefunction may be wrong for small radii, particu- 
larly for the 3' level (it is well known that DWBA calculations are insensitive to such radii). 
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For the :+ channel this approximate cross section is compared in figure 10(b) with the 
cross section when all terms are retained. The accuracy of the approximation in the ;+ 
channel is similar, showing that even when there are overlapping resonances the analysis 
can still be performed in this modelindependent way. 

6. Conclusion 

The real Weinberg state calculations succeeded in reproducing the features of the cc 
calculations for both the n-”C elastic scattering phase shift and level parameters in 
$ 4, and the wavefunctions required as form factors for 12C(d, p)13C stripping in $ 5, 
though with varying degrees of accuracy. The schematic method 2 was almost as good 
as the more exact method 1. The test was a stringent one because of the complexity of 
the spectrum, with strong configuration mixing. The fundamental requirement of a 
sufficiently simple and proper form factor, imposed in $1, is met in (2.24) and (2.25),  
in which the third and fourth terms usually dominate. Under sufficiently favourable 
conditions, the fourth ‘model-dependent’ term might be neglected, leading to very 
simple extraction of the spectroscopic factor. However, we found that in the example 
calculated this was not good enough. Nevertheless, the last calculation in $ 5 indicates 
a practical means of overcoming this, which it is intended to pursue elsewhere. These 
corrections correspond to the nuclear structure effects which have been much studied 
recently in calculating form factors for stripping to bound states by the separation 
energy prescription. In this connection, the work of Anderson et al(l970) runs parallel 
to ours in their introduction of Sturm-Liouville states (eigenstates of the Lippmann- 
Schwinger kernel in another guise) to calculate bound-state form factors. 

From the viewpoint of mathematical technique, while our more exact method 1 
offers less insight into the process than the schematic method 2, it can be regarded as an 
algebraical approximation for solving a cc problem by means of inverting a small matrix, 
in the category of methods studied by Romo (1972). The method of real Weinberg 
states leaves room for various developments. Thus it is possible to treat all channels by 
Weinberg methods, that is, to absorb the Q space into the P space, which is perhaps a 
more consistent approach, coming closer to the work of Anderson et ai  (1970). Calcula- 
tions of this kind have been performed, but the numerical results were only slightly 
affected. 

Acknowledgments 

One of us (BJC) acknowledges the financial support of SRC and Liverpool University ; 
and another (QKKL) the financial support of Liverpool University throughout the 
period when this work was undertaken, the kind hospitality of Dr P E Hodgson at the 
Nuclear Physics Laboratory, Oxford, where part of the coupled-channel work was done, 
and the kind hospitality of the Hahn-Meitner Institut, Berlin. The coupled-channel 
program was kindly made available to us by Dr D Edens of Oxford. Invaluable computa- 
tional assistance had been given by Miss A Dudek, Miss B Hollmann, and Dr B C 
Walsh. We are grateful to Dr G Pisent of Padua, Italy, for his communications on 
various aspects of his coupled-channel work. 



Neutron-'*C and 12C(d,p)13C by the Weinberg state method 1243 

References 

Ajzenberg-Selove F 1970 Nucl. Phys. A 152 6 
Alty J L et al 1967 Nucl. Phys. A 97 541-60 
Anderson B L, Back B B and Bang J 1970 Nucl. Phys. A 147 33-44 
Austern N 1970 Direct Nuclear Reaction Theory (New York: Wiley) p 304 
Bang J and Zimanyi J 1969 Nucl. Phys. A 139 53444 
Bohne W et a1 1968 Nucl. Phys. A 106 442-8 
Buck B 1963 Phys. Rev. 130 712-26 
Buck B and Hill A D 1967 Nucl. Phys. A 95 271-319 
Bunakov V E 1970 Nucl. Phys. A 140 241-56 
Buttle P J A 1967 Phys. Rev. 160 719 
Fuchs H et a1 1971 Phys. Lett. 37B 285-7 

Fuller R C 1969 Phys. Reo. 188 1649-60 
Glockle W, Hufner J and Weidenmiiller H A I967 Nucl. Phys. A 90 481-507 
Hosono K 1968 J. Phys. Soc. Japan 25 36-51 

- 1972 Nucl. Phys. A 1% 286302 

Huby R 1969 Z. Phys. 218 417-30 
- 1971 Nucl. Phys. A 167 271-88 
Huby R and Mines J R 1965 Rev. mod. Phys. 37 4 0 6 8  
H u b y  R and Liu Q K K 1968 Nucl. Phys. A 122 145-52 
Humblet J and Rosenfeld L 1961 Nucl. Phys. 26 529-78 
Leung T and Koshel R D 1973 Ann. Phys., N Y  75 132-55 
Levin F S 1968 Ann. Phys., N Y 4 6  41-75 
Lipperheide R 1970 Phys. Lett. 32B 555-7 
Liu Q K K 1973 Z. Phys. 258 301 
Lovas I 1966 Nucl. Phys. 81 35349 
Mahaux C and Saruis A M 1971 Nucl. Phys. A 177 10>24 
McGruer J N, Warburton E K and Bender R S 1955 Phys. Rev. 100 235-9 
Mikoshiba 0, Terasawa T and Tanifuji M 1971 Nucl. Phys. A 168 417-37 
Mori A and Terasawa T 1972 Prog. theor. Phys. 48 82639 
Newton R G 1966 Scattering Theory of Waves and Particles (New York: McGraw-Hill) p 190 
Pascolini P, Pisent G and Zardi F 1969 Lett. Nuovo Cim. 1 643-8 
Pisent G and Saruis A M 1967 Nucl. Phys. A 91 561-75 
Purcell J E 1969 Phys. Rev. 185 1279-85 
Reynolds J T et a1 1968 Phys. Rev. 176 1213-26 
Robson B A and Van Megen W J 1972a Nucl. Phys. A 184 50-66 

Romo W J 1968 Nucl. Phys. A 116 617-36 
__ 1962 Nucl. Phys. A 191 65-87 
Rosenfeld L 1968 Spectroscopic and Group Theoretical Methods in Physics (Racah Memorial Volume), ed 

F Bloch et a1 (Amsterdam: North-Holland) pp 203-30 
Schlessinger L and Payne G L 1972 Phys. Rev. C 6 2047-57 
Sebe T 1963 Prog. theor. Phys. 30 290-326 
Tamura T 1965 Rev. mod. Phys. 37 679-708 
Unger H J 1969 Nucl. Phys. A 139 385406 
Van Giai and Marty C 1970 Nucl. Phys. A 150 593-608 
Vincent C M 1968 Phys. Rev. 175 1309-13 
Vincent C M and Fortune H T 1970 Phys. Rev. C 2 782-92 
Wang W L and Shakin C M 1970 Phys. Lett. 328 4 2 1 4  
Weinberg S 1963 Phys. Rev. 131 440-60 

- 1972b Nucl. Phys. A 184 67-80 


